Area-minimizing Minimal Graphs over Nonconvex Domains
نویسندگان
چکیده
SuÆcient conditions for which a minimal graph over a nonconvex domain is area-minimizing are presented. The conditions are shown to hold for subsurfaces of Enneper's surface, the singly periodic Scherk surface, and the associated surfaces of the doubly periodic Scherk surface which previously were unknown to be area-minimizing. In particular these surfaces are graphs over (angularly accessible) domains which have a nice complementary set of rays. A computer assisted method for proving polynomial inequalities with rational coeÆcients is also presented. This method is then applied to prove more general inequalities.
منابع مشابه
Quadratic Programs with Hollows
Let F be a quadratically constrained, possibly nonconvex, bounded set, and let E1, . . . , El denote ellipsoids contained in F with non-intersecting interiors. We prove that minimizing an arbitrary quadratic q(·) over G := F\∪k=1 int(Ek) is no more difficult than minimizing q(·) over F in the following sense: if a given semidefinite-programming (SDP) relaxation for min{q(x) : x ∈ F} is tight, t...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملMINIMAL SURFACES AND HARMONIC DIFFEOMORPHISMS FROM THE COMPLEX PLANE ONTO CERTAIN HADAMARD SURFACES By JOSÉ A. GÁLVEZ and HAROLD ROSENBERG
We construct harmonic diffeomorphisms from the complex plane C onto any Hadamard surface M whose curvature is bounded above by a negative constant. For that, we prove a JenkinsSerrin type theorem for minimal graphs in M × R over domains of M bounded by ideal geodesic polygons and show the existence of a sequence of minimal graphs over polygonal domains converging to an entire minimal graph in M...
متن کاملMinimal Graphs in R over Convex Domains
Krust established that all conjugate and associate surfaces of a minimal graph over a convex domain are also graphs. Using a convolution theorem from the theory of harmonic univalent mappings, we generalize Krust’s theorem to include the family of convolution surfaces which are generated by taking the Hadamard product or convolution of mappings. Since this convolution involves convex univalent ...
متن کاملOn Minimizing Quadratically Constrained Ratio of Two Quadratic Functions
We consider the nonconvex problem minimizing the ratio of two quadratic functions over finitely many nonconvex quadratic inequalities. Relying on the homogenization technique we establish a sufficient condition that warrants the attainment of an optimal solution. Our result allows to extend and recover known conditions for some interesting special instances of the problem and to derive further ...
متن کامل